

Abstract - In this paper, we describe BuildBot, a robotic in-

terface developed to assist with the continuous integration process
utilized by agile software development teams. BuildBot’s physical
nature allows us to engage the agile software development team
members through vision, hearing and touch. In this way, Build-
Bot becomes an active part of the development process by bring-
ing together human-robot interaction, human group dynamics
and software engineering concepts through a number of interac-
tion modalities.

In this paper we describe the design and implementation of the
BuildBot prototype, a robotic interface that can sense virtual
stimuli, in this case the state of a software build, and react ac-
cordingly in a physical way via vision, sound and touch. We pre-
sent an early evaluation comparing BuildBot to two other tools
used by the agile team to monitor the continuous integration
process. We also show preliminary results indicating that Build-
Bot may be more noticeable to the developers and contribute to a
fun and lighthearted atmosphere.

We argue that by increasing awareness of the state of the
software build, BuildBot can assist in the self-supervision of agile
software engineering teams and can help the team achieve its
goals in a more engaging and sociable manner.

I. INTRODUCTION

Robots can easily interact, perceive and act in both the
virtual domain of computers and the physical realm of hu-
mans, and therefore promise to offer an effective interface
between the two. Robots afford visual, audio and tactile in-
teraction modalities, which can be used to enhance the in-
teraction experience humans have with either physical or
virtual entities. We believe that agile software engineering,
with its human-centric practices, can benefit from the use of
a robotic interface that can assist with two major agile con-
cepts: continuous integration and knowledge sharing.

Continuous integration is used by agile teams working on
a common piece of software. Every time developers check
new code into the shared source code repository, the entire
software is built, deployed and tested against a suite of
automated regression tests. Ideally, these kinds of check-ins
occur frequently. Continuous integration with regression
testing and frequent check-ins of tiny increments ensure that
existing functionality is not broken by the new code. A sim-
ple bug which may take only a few minutes to repair imme-
diately after it is introduced into the code base may end up
costing significant numbers of person-hours once more code
has been written around it. Continuous integration encour-
ages clean design and prevents problems later on in the de-
velopment process, since bugs can be caught earlier [9].

After finding newly checked-in code in a repository, a
continuous integration server builds and deploys the soft-
ware, then executes all tests. If one of these tests fails, the
continuous integration server sends an indication to the last
person who checked-in code. This entire process occurs in
the virtual domain. It is the responsibility of that team
member to ensure that a reported bug is resolved immedi-
ately, for example by reverting to an older version or by
fixing the problem in another way. If the bug fix is delayed,
other team members might synchronize their code with a
broken version of the system – resulting in even more effort
required to resolve the problem. We are interested in an
engaging and sociable monitoring technique that will en-
courage team members to “do the right thing”, avoiding
dryer and perhaps more threatening approaches such as those
requiring the project manager’s involvement.

Excepting face-to-face communication, knowledge shar-
ing is achieved in agile teams through information radiators.
These are openly displayed artifacts or other means by which
developers can gain knowledge about the state of the project
without explicitly seeking it [1]. A multimodal system can
enhance the way the knowledge is shared without becoming
a distraction to the intended audience. Human-Computer
iteraction has a related concept, ambient data displays,
which present information so that “one does not even need to
be looking at it or near it to take advantage of its peripheral
clues.” [2] These types of displays are often very simple and
use colour, sound and motion to convey information.

We believe robot has the potential to be an effective as-
sistant to an agile team. Robots possess the ability to physi-
cally respond to virtual stimuli, bringing awareness infor-
mation from the digital realm into the physical and
vice-versa. Robots are equipped with input sensors and
output actuators that can allow them to become a believable
physical component of the agile team physical setting. We
believe robotic embodiment of the state of the software build
can help an agile team collaborate more effectively, espe-
cially if the robot is allowed to physically interact with the
team members. In this environment, a BuildBot would act as
a dynamic information radiator, that changes according to
the circumstances, rather than a static radiator, which tend to
get ignored [1]. Information exchange thus occurs in an
ambient manner, in the physical context of humans [12].

Our BuildBot is used as an ambient & interactive data
display and is applied to continuous integration. Not only
does it provide important information pertaining to the cur-
rent build status, but it also keeps the team focused on the

 Ruth Ablett, Ehud Sharlin, Frank Maurer, and Jörg Denzinger, Craig Schock

Department of Computer Science, University of Calgary, Alberta, Canada
e-mail : {ablettr, ehud, maurer, denzinge, schock}@cpsc.ucalgary.ca

BuildBot: Robotic Monitoring of Agile Software
Development Teams

goal of finishing the project and verifies the different parts of
the software integrate properly. In addition, BuildBot in-
creases accountability and enhances the team’s sense of ac-
complishment because the project is being successfully
tested.

In Section II, we will describe previous work in the sub-
domain of agile development and related human-robot in-
teraction (HRI) efforts.. In Section III, we will introduce
BuildBot, our proposed solution. Section IV describes the
high-level design approach for the overall BuildBot system,
and in Section V, the low-level implementation of the system
is explained in detail. In Section VI, we will present the re-
sults of a preliminary evaluation performed on a group of
participants comparing BuildBot with two other build noti-
fication mechanisms. Future work is outlined in Section VII.

II. PREVIOUS WORK

Kidd [11] discusses different uses for sociable robots. He
describes the transition between using robots as tools or
simple entertainment devices (such as an industrial robot or a
children’s toy) to becoming partners that interact with hu-
mans. While still limited in their capabilities, emerging ro-
bots are designed to interact with their users sociability, and
to integrate in a social setting as peers and teammates
[11-13]. The goal of BuildBot is to develop a
near-autonomous robotic partner or colleague, designed and
tuned for a focused agile software development social set-
ting.
 A study by Saff and Ernst [10] evaluated continuous in-
tegration when used by a single developer to ensure new
code passed regression and unit tests. They found that con-
tinuous integration had a positive effect on the completion of
programming tasks. Their study shows that individual de-
velopers benefit from continuous testing of their own code.
However, we are interested in ways that different Continu-
ous Integration tools affect Agile teams as a whole.

Agile methods (such as eXtreme Programming [3] or
Scrum [4]) refer to human-centric software engineering
methodologies that advocate the development of
high-quality software using short iterations. Agile methods
rely heavily on automated regression testing to ensure in-
ternal software quality.

According to Kent Beck, “an interested observer should
get a general idea of how the project is going in 15 seconds.
He should be able to get more information about real or
potential problems by looking more closely.” [5] This can be
achieved using ambient data displays. The benefits can be
seen by outside observers and the development team mem-
bers. They can quickly assess the state of the project, and this
provides encouragement and an incentive to improve.

Savoia [6] has created an ambient feedback device for
continuous integration, the Java Lava Lamp. There are two
lava lamps involved, one green and one red (Figure 1). The
green lamp represents a successful build, and the red lamp a
build in which one or more tests have failed. Timing is also
significant; because the lamps take a few minutes to warm
up, the bubbles mean the lamp has been on for at least several
minutes. For a green lamp, this is good, however, bubbles in
the red lamp indicates a problem.

Fig.1 The two Java Lava Lamps used to display the build status.

To integrate Java Lava Lamps into the development
process, the continuous integration server is connected to a
controller that sends a signal, 0 or 1, to an electrical power
outlet receiver. The receiver is connected to two lava lamps.
only one of which has power at any given time. In the case of
a successful build, the green lamp is turned on. In the event
of a build break, the red lamp is turned on. Since lava lamps
take a few minutes to heat up, it is possible to tell how long
the build has been broken. This delay affords the developers
the opportunity to fix a broken build before the lava lamp
indicates that the build has been broken for a long time.. The
playful nature of the lava lamp encourages the developers to
fix the build without requiring the involvement of the project
manager.

While this approach is simple, it only makes use of visual
information and this requires developers to poll the ambient
display. A better solution would eliminate the need for
polling and instead utilize information osmosis. In this way,
information would become available for developers without
causing a distraction.

III. SOLUTION IDEA

The main design goal behind BuildBot was to use the agile
team’s collective awareness to create an engaging and fun
tool that helps the team fix broken builds as quickly as pos-
sible.

If new code integration and testing is successful, BuildBot
provides positive feedback to the entire team by happily
barking from its home base and showing green LED lights.
By displaying its contentment, it congratulates everyone in
the team for their work in keeping the build stable. A suc-
cessful build is a team effort, and instead of congratulating
every member individually, BuildBot shows its contentment
through multimodal ambient feedback.

If new code integration causes one or more tests to fail,
the build is considered broken. In this case, BuildBot walks
to the individual whose code is responsible for test failure
and displays to the team that it is not happy with that de-
veloper, in a friendly, funny, and playful way (Figure 2). The
timing of this walk is important – BuildBot’s deliberately
slow and dramatic walk serves two purposes. It alerts the
team to the broken build via ambient sound and visual cues.
By sending an e-mail to the responsible individual, BuildBot
alerts him/her to the failed tests and gives him/her time to fix
the problem. After a few minutes, the dog begins its walk to
the workstation. This creates a playful tension as the other
team members wonder where the dog is going.

By giving the responsible individual a lighthearted and

friendly ‘punishment’, BuildBot introduces more targeted
accountability. It avoids potentially unpleasant confronta-
tions (for example, between a team leader and a developer)
and it introduces a mild social incentive to fix the problem
without having to involve a superior.

Fig.2 BuildBot arriving at a developer’s desk.

IV. DESIGN APPROACH

There are four different components, excluding the robot,
involved in communicating with BuildBot. The architecture
and inter-component communication are shown in Figure 3
below.

Fig.3 BuildBot system architecture.

The repository contains the software currently being de-

veloped by the software team. Whenever a change is up-
loaded to the shared code repository by a team member, the
continuous integration component runs a script that inte-
grates the entire team’s code. The build results are sent via
email to the email server which stores these messages for

retrieval. The email server can be external, for example,
Google’s Gmail.

The final component, the messenger, is timed to check
email from the email server and to download messages sent
from the repository. If there is a new message on the email
server regarding the build, the messenger opens a socket to
the robot and sends the appropriate command over the wire-
less connection. This command contains the build status,
name of the build-breaker, and other pertinent information.

V. ROBOTIC INTERFACE INFORMATION

In order to create BuildBot, it was necessary to have a
robot with several capabilities and features. To physically
interact with the team members, the robot needs to be able to
walk with stability. It also needs to gain information about its
environment through vision. In order to act as an information
radiator and provide ambient build information, sound or
LED lights (or both) are necessary. To communicate with the
continuous integration server, the robot needs wireless ca-
pability. Lastly, the robot must be easily programmable.

Fortunately, advances in robotics have resulted in robots
that are powerful, affordable and compact enough to make
BuildBot feasible. The robot used for the BuildBot’s im-
plementation is the most recent model of the Sony AIBO
robot dog, the ERS-7 [8].

A. Hardware

The AIBO is ideal for an ambient information radiator as
it combines motion, visual, audio, and tactile components. It
can move its head and four legs, and comes equipped with a
camera, two microphones, a speaker, LEDs in various col-
ours, wireless capability, touch-sensitive buttons, and sen-
sors for temperature, vibration, distance and acceleration.
The robot is also zoomorphic, in the shape of a cute puppy,
and that adds to the feeling of fun and lightheartedness.

B. Robotic Behaviour

BuildBot’s behavior is event-based. The robot stays in its
starting position until it receives a message from the mes-
senger regarding the build status. If the build is broken,
BuildBot identifies a developer by moving to his/her work-
station.

When creating the first prototype of BuildBot, it was
necessary to simplify complex details such as the vision and
planning algorithms. In order to allow the dog to walk to the
team member’s desk, we designed a vision algorithm ana-
lyzing the streaming video from the robot’s eye (a camera
integrated into the end of its nose). For simplicity, a tree
structure of guidelines were placed on the floor. In this tree,
each leaf terminated at a developer’s desk and this allowed
BuildBot to easily navigate to a specific workstation using
the the simplest route. The lines on the floor have junctions
which branch at 90 degrees (Figure 4). Perpendicular junc-
tions simplify the junction detection algorithm so that
BuildBot can easily distinguish junctions from curves.

Fig.4. A straight line, a curved line, and a junction.

When walking, the dog tracks junctions and consults an

internal map, in the form of a matrix, which gives directions
to each workstation. For example, in Figure 5 below, in order
to get to Naomi’s workstation, BuildBot will turn left at the
first junction, go straight at the second, and turn right at the
third. A ‘0’ in the next junction means that there are no more
junctions.

Fig.5. An example of BuildBot’s internal map.

Once BuildBot reaches the end of a line and has passed

the correct number of junctions, it has arrived at its goal.
BuildBot then looks up and gently ‘punishes’ the team
member by barking and growling. This robotic reprimand
will cease when the build is fixed, or when the robot senses a
touch on its head sensor.

C. Low-Level Implementation

The robot’s behavior is controlled using the C++ pro-
gramming language using the Tekkotsu development
framework [7]. The first step in implementing BuildBot’s
behavior was to program the robot to follow a single line on
the floor. This was done by acquiring the vision stream via
Tekkotsu and thresholding the intensity values to create a
binary array. The line detection algorithm is straightforward
– every 500 milliseconds, the midpoint of the binary one
values (representing the line) in every horizontal row of the
binary array is computed and the mean of these values is
computed. If this midpoint is off center, the robot will rotate
itself accordingly. The robot can follow curves, as long as
they are not too sharp. The line colour must be sufficiently
contrasting with that of the floor – the best choice of line
colour is fluorescent pink. Pink has the highest intensity and
is sufficiently rare that there is a reduced chance of the robot
mistaking some external brightly-coloured object as the line.
In our test environment, our lines were eggshell white and
the line tracking algorithm proved to be stable enough for our
purposes, even under the inconsistent and changing light
conditions in our lab.

After implementing the line-following component, the
next step was to include support for the detection of junc-
tions. After the line direction has been detected, BuildBot
attempts to detect an intersection to the left, right, or in both
directions.

The internal map inside BuildBot contains directions on
how to get to each team members’ desk by following the

junctions. For example, a certain developer’s workstation,
BuildBot would turn left at the first junction, go straight at
the second, straight at the third, and turn right at the fourth,
following the line until it ends, meaning it will have arrived
at her desk.

There are several circumstances under which the robot
can determine that it has become lost. If the robot loses the
line (or if the lighting is too dim), the robot will check if it
has passed the correct number of junctions to be at the cor-
rect desk, if not, the robot is assumed to be lost. Also, if the
robot detects a type of junction at which its next turn in-
struction is not possible (for example, to go left at a
right-only junction), it also becomes lost. If the robot en-
counters a junction whose junction number is higher than the
number of junctions (a result of perhaps having wrongly
identified a junction where there was none, for example),
BuildBot assumes it is lost. When it becomes lost, BuildBot
stops and calls for help by playing a quiet whining sound
until it is placed back on its power station.

After intersection detection, the major components of the
robotic implementation were completed. Aesthetic compo-
nents, such as posture and barking, were added afterward.

Occasionally, a developer will fix the broken build before
BuildBot arrives at their workstation. In this case, the robot is
able to turn around and head back to its starting point, fol-
lowing the line back and keeping track of its location. The
algorithms for going to a desk and returning to the power
station are almost totally identical, except for that the junc-
tionCount variable is decremented rather than incremented.
Also, when turning, BuildBot will turn in the opposite di-
rection to the its map matrix when returning to the power
station.

Similarly, if the robot senses its battery power is at 30%, it
will turn around and head back to its power station. It will
continue to growl until it senses the build has been fixed.

For the continuous integration server component, the
script was written using Apache Ant. It includes the sending
of an email, which contains the person who last updated code
to the repository, as well as the build status.

The messenger component was written using Java. It re-
trieves BuildBots email messages from Google’s Gmail, and
parses the latest message for the build status. It then sends the
build status (and, if broken, the last person to upload code) to
BuildBot through a wireless socket.

VI. PRELIMINARY EVALUATION

Although a formal, thorough user study was not yet
performed, two preliminary evaluations were done with a
peer group. The first was done with 4 developers, and the
second a group of 10 developers. Both groups were a mix of
male and female graduate students between 23 and 35 years
of age.

Even though the students were not involved in the same
project, the purpose of this study was to assess how effective
certain notification mechanisms were, and what effect they
had on the participants. These notification mechanisms
would be potential candidates for use in a development en-
vironment for notifying the developers of a build break.

The case in which the build is successful, where
BuildBot does not move from its starting location, was not

tested with developers. This is because the absence of the
robot’s movements is an indication that the build is fine. This
study was aimed at determining the effectiveness of different
mechanisms to notify developers that there is a problem.

Three such mechanisms were compared: email (only),
the lava lamps (see the Previous Work section), and the de-
ploying of BuildBot to one of the developers (plus e-mail).

The first notification mechanism, email, was sent with
the message “BUILD BROKEN” to all developers. No
physical notification of any kind accompanied this email.

The lava lamps were displayed in a prominent position
in the development area so that any developer could see it
from their desk (some had to turn around to see them, as they
were facing the opposite direction). They were switched off
or on (switching the illuminated lamp from red to green or
vice-versa), and this was combined with an email alerting all
developers. The mechanism controlling the lava lamps’
power source makes a clicking sound when the switch oc-
curs, so this also alerts the developers via sound.

The third mechanism, BuildBot, was deployed to a de-
veloper, selected randomly, and this was accompanied by an
email only to that developer.

While the students worked at their workstations on their
individual tasks (unrelated to each other), a notification (of
one of the three kinds mentioned above) was sent out. The
participants were instructed to notify the study facilitator
privately, using an instant messaging program when they
noticed the robot, received an email, or noticed the lava
lamps had changed their state. Sending an instant message
ensured that no participants became aware of a change
through this communication.

This study was performed on two different days. On the
first day, the four participants had not seen the robot or the
lava lamps in action. On the second day, the ten participants
had seen the robot and lamps in action before and were used
to them. These two studies were done on these two days to
measure the effect of novelty on the developers.

The results of the first evaluation were as follows: When
the email was sent, only the two who had email notification
programs noticed (within a reasonable amount of time). In
one case, just after the last run, one person checked for email
and saw all the email notifications at once.

Generally, when the lava lamps were switched in con-
junction with the email, only one person heard the click of
the power switch (and this person did not have a clear view
of the lava lamps from their desk). Of the people who re-
sponded to the change, half had noticed the lamp had
changed, and half had only received the email. The two re-
spondents who responded to the sight of the lava lamps were
getting up and walking around the lab when they noticed the
lamps had changed.

When BuildBot was deployed, all four participants were
alerted by the sight or sound of the robot walking. Three out
of the four participants noticed when the robot was near their
desks.

 The participants didn’t seem to notice the lava lamps,
even though they are in a prominent location. However,
when BuildBot was deployed, the combination of sight and
sound resulted in everyone noticing the robot when it was
near their desk. As a result of this, every one of the partici-
pants agreed that the robot was a distraction. However, every

one of the participants also either agreed or strongly agreed
that the robot also contributed to a fun atmosphere. We ob-
served that the energy in the room increased noticeably when
the robot was walking to a developer’s desk.

During the second evaluation, the results were more
polar. The lamps were switched six times during the course
of the second study, and only one of the participants noticed
only one of these changes (and that was when he returned to
the room and found the red lava lamp lit). The robot, on the
other hand, was sent out twice, and both times, eight out of
the ten respondents noticed it. The respondents who did not
notice the robot were out of the room when it ran.

During both days, the developers nearest to BuildBot
noticed it when it was near them, even if it was on the other
side of a cubicle wall. On the first day, it took participants an
average of 5.1 minutes to notice BuildBot. On the second
day, it took participants an average of 3.3 minutes.

For some participants, especially those listening to mu-
sic or talking to other people during the study, they did not
notice the robot until it was near their workstation. Some
participants were more distracted by the robot’s movements
because their desks face outwards, towards aisleways the
robot used to arrive at different desks. Participants who did
not find the robot’s movements distracting had desks that
faced the walls of the lab.

Figure 6 shows the data collected from the post-study
questionnaire.

Fig.6 The post-questionnaire results from both studies.

Developers were easily alerted by the movement of

BuildBot, but found it somewhat distracting when the robot
was in motion. Despite this, most developers felt that the
robot contributed to a fun atmosphere.

From these results, we conclude that BuildBot clearly
was more effective at alerting developers when a change
occurred. Although it was somewhat distracting, the fact that
most developers felt that BuildBot contributed to a feeling of
fun indicates that it supports the Agile methodology.

VII. FUTURE WORK

Although an informal evaluation was done in our lab, the
next step is to perform a formal evaluation of our approach
with a group of developers in industry in order to determine
if BuildBot is actually helping the team.

The robot in its current implementation is not able to re-
charge its own batteries at its base station. This will be es-
sential if BuildBot is to be used for more than a few hours.
BuildBot should be able to find its own power station using
its camera.

Other aspects of the system that may be implemented in
the future include different mechanisms to give the dog a
more lifelike demeanor – examples of this include ‘sniffing’
the air menacingly, or implementing a more realistic-looking
gait (instead of the default walk, in which the dog walks on
its elbows).

VIII. CONCLUSION

We believe BuildBot has great potential to play a sig-
nificant role in an agile software engineering environment. It
keeps the development team focused on the task at hand, that
is, to efficiently develop software whose components work
together seamlessly. We believe that BuildBot may give the
team a sense of accomplishment and progress toward a
shared goal. The robot has the potential to increase morale in
this way and to keep the social environment more engaging
and fun for the agile developers. BuildBot’s visual and au-
dible presence provides a sense of project dynamics and
progress to any developer collocated with it. The sight and
sound of the dog approaching a team member’s workstation
will provide that developer with a positive social incentive to
fix the build – avoiding situations of potential embarrass-
ment, resentment or discomfort that may result if the same
developer was to be approached by the project manager.

We believe that a team practicing Agile Methods could
benefit from a robot that could continuously access this vir-
tual information and express it in a physical way, beyond
simple ambient data. Since robots, perhaps similarly to hu-
man software developers, actively exist in both the physical
and virtual realms, we believe that they are well-suited for
various tasks in the agile software development sociable
setting.

IX. REFERENCES

[1] A. Cockburn, Agile Software Development: The Cooperative Game,

Agile Software Development Series, 2001, pp 70-80.

[2] M. Weiser, J. S. Brown. "Designing Calm Technology", PowerGrid-

Journal, v 1.01, http://powergrid.electriciti.com/ 1.01, July 1996.

[3] K. Beck, Extreme Programming Explained, Addison Wesley, 2000.

[4] L. Rising, N. S. Janoff, "The Scrum Software Development Process for

Small Teams," IEEE Software, vol. 17, no. 4, pp. 26-32,
Jul/Aug, 2000.

[5] S. Baker. Agile in Action: Informative Workspace.

http://www.think-box.co.uk/blog/2005/08/informative-workspace.ht
ml.

[6] A. Savoia, “eXtreme Feedback for Software Development”, 2004.
http://www.developertesting.com/archives/month200404/20040401-e
XtremeFeedbackForSoftwareDevelopment.html.

[7] E. Tira-Thompson, N. Halelamien, J. Wales, D. S. Touretzky. Tek-

kotsu: Cognitive Robotics on the Sony AIBO.
http://www.cs.cmu.edu/~tekkotsu/media/tira-thompson-iccm04.pdf.

[8] Sony AIBO home page. http://www.sony.net/Products/aibo/.

[9] M. Fowler, “Continuous Integration”. May 2006.

http://www.martinfowler.com/articles/continuousIntegration.html

[10] D. Saff, M.D. Ernst. An Experimental Evaluation of Continuous

Testing During Development, In Internation Symposium on Software
Testing and Analysis (ISSTA ’04), p76-85, Boston, USA. July 11-14,
2004.

[11] C.D. Kidd, Sociable Robots: The role of presence and task in hu-

man-robot interaction. MSc thesis, Massachusetts Institute of Tech-
nology, June 2003.

[12] M. Xin., E. Sharlin Exploring Human-Robot Interaction Through

Teleprescence Board Games. In Proc. ICAT 2006, Lecture Notes in
Computer Science, Volume 4282/2006, Springer (2006).

[13] C. L. Breazeal. Designing Sociable Robots (Intelligent Robotics and

Autonomous Agents). The MIT Press (2002).

