
Reviving a Tangible Interface Affording 3D Spatial Interaction

Steve Sutphen1 Ehud Sharlin1 Benjamin Watson1 John Frazer2

 1University of Alberta, Canada 2School of Design, Hong Kong Polytechnic University, China
 steve@cs.ualberta.ca ehud@cs.ualberta.ca watsonb@cs.ualberta.ca sdfrazer@polyu.edu.hk

Abstract

Tangible interfaces offer natural means of human
computer interaction and have already been shown to
simplify existing computerized applications and offer
solutions for tasks that were considered to be “out of the
scope” of human-computer interaction. We are currently
perusing new applications for 3D geometry defining
tangible interfaces. In this paper we attempt to provide
the reader with introduction to the underling paradigms
and research in this emerging domain. We describe in
detail a tangible interface, the Segal Model, created by
John Frazer and his colleagues 20 years ago. We detail
our technical efforts in reviving this tangible interface
and updating its communication and operating
techniques. We describe our initial results of building
physical 3D worlds on top of the Segal Model and then
rendering them into fully active 3D worlds, using the
“Half-Life”TM graphical engine.

1. Introduction

1.1 Overview

Our natural interaction with the world relies, among
other abilities, on our tangible manipulation ability. We
can move, manipulate, assemble and disassemble a
seemingly endless variety of physical objects with very
small cognitive effort. Yet, when it comes to Human-
Computer Interfaces (HCI) the thirty year old Keyboard-
Mouse-Monitor interface and the Window-Icon-Menu-
Pointer (WIMP) interaction metaphor prevail as the major
or even sole HCI. We use this interface while performing
word processing, 3D graphical design and modeling, and
even while manipulating a virtual avatar in a 3D-
computer game. We believe that many of our natural
abilities are blocked by this standard HCI, forcing
complexity on what could otherwise become a simple,
even natural HCI task. Especially, we believe that
providing new and original tangible 3D-shape based HCI
tools might change dramatically the way in which we
perform 3D modeling and construction oriented HCI
tasks.

We begin the paper by presenting a brief overview of
the disciplines underlying these new concepts of tangible
interfaces (section 2). We present a short summary of the

related research performed in the field of tangible
interfaces and emphasize the role that we are planning to
play in this research field (section 3). We present our
technical work reviving a pioneering tangible interface
designed and built by John Frazer and his colleagues 20
years ago - the Segal Model [15,16] (section 4). We then
present our initial results, and demonstrate some of the
potential of a tangible interfaces based design of 3D
worlds by using a Half-Life based graphical engine [30]
(section 5). The paper concludes with a discussion of our
future plans (section 6).

1.2 Physical, Natural Interaction Themes and
HCI

What can we learn from the ease of building models or
manipulating objects in the real world as opposed to the
hardship involved in performing similar tasks in a digital
environment? We briefly present three concepts that are
taken from our “natural” interaction with physical tasks
and which can be borrowed as themes for the design of
new HCI paradigms and tangible interfaces: the
affordances or transparency of the interface, the
synchronization or coupling of perception space and
action space, and the support of both pragmatic and
epistemic tools [13].
• Interface Affordances: When we interact with
everyday objects in the real world we usually do not have
to consciously apply complex thought in order to
manipulate or use them. Their “behavior” is inferred from
their qualities: shape, weight, size, etc. This functionality
expressed through the object’s physical form is called
“affordances” [13,19,26]. According to this concept, most
physical objects “afford” their behavior, that is, their
physical form contains a clear representation of their
functionality. Most user interaction techniques,
particularly in 3D modeling, include a set of rules and
controls that manipulate their functionality. These rules
and controls are far from affording their functionality. A
simple example is the standard mouse. Although it
enables us to control an endless variety of tasks, it is far
from “affording” its different functionality in the diverse
tasks it performs.
• Synchronization of the Perception Space and the
Action Space: When we interact with an object or
physical media in the real world, our hands and fingers
(termed as parts of our action space) coincide in time and

space with the position of the object we are handling
(termed as part of our perception space) [13]. This spatial
and temporal “natural” synchronization of our perception
space and our action space enables us to perform complex
tasks. Yet, conventional computer user interfaces support
concepts of separation between input and output devices,
thus creating a spatial division (and in worst cases, where
latency exists, even a temporal division) between the
user’s perception space and action space. For example,
the screen - mouse standard user interface separates the
objects in the perception space (the screen) from the
action space (the mouse) [13].
• Support of both pragmatic and epistemic tools:
When we build a physical 3D model, we actually perform
an activity that is both cognitive, or goal related and
motorized [13]. This means that we try to reach a
cognitive goal - giving a 3D shape to a cognitive concept
- by physical means, i.e., interaction with a certain
physical media. Such physical task involves both
pragmatic and epistemic actions [13,24]. Pragmatic
actions can be defined as the “straightforward”
maneuvers that bring our 3D shape closer to our cognitive
goal. Epistemic actions, on the other hand, can be defined
as the “trial and error” maneuvers that we perform while
trying to progress. Some of these maneuvers will fail and
would not bring us any closer to our goal, while others
will reveal new information and directions leading to it.
In fact, this information would have been very hard to
find without trial and error. Physical 3D modeling, in
most of the simpler cases, provides us with both
pragmatic and epistemic tools for performing our tasks,
with a low cost for mistakes made while executing an
epistemic step [13]. While building models with Lego
blocks we almost inattentively test the validity of certain
actions, some of which do not lead directly to our “broad”
task. The price of correcting an action that proves to be
erroneous is minimal. On the other hand, most of the
tools in a computer-user interaction environment are
geared to pragmatic actions. The idea of simple, primitive
epistemic tools does exist in user interaction techniques.
Yet, when it comes to complex tasks such as 3D
modeling, the usability of these epistemic tools is
substantially inferior to their physical world parallels. For
example, the concept of the ‘undo’ operation is linear,
meaning that to ‘undo’ a single erroneous operation, you
have to also undo all the operations that followed it.

2. Related Work

Many tangible interface technologies and applications
are emerging as more natural HCI alternatives to the
standard mouse and keyboard interface. To mention a
few, the toy industry has several examples of such
tangible interaction tools between children and
computerized applications [28] or ‘huggable interfaces’

[3,23]). Tangible interfaces were introduced as simple
and natural methods to support animation keyframing
[8,9]. Tangible curve and surface inputting tools were
introduced in the ShapeTape [6] and the Haptic Lens [29]
respectively. Tangible 3D-shape manipulation was
suggested in DO-IT [25]. Topological (though limited)
tangible inputting for educational purposes was
introduced in [20,31]. Planar, physical desktop tangible
interaction was introduced in several studies
[7,11,12,13,21,22,32]. For a thorough discussion of this
emerging field and its potential see [10,11].

Several research groups developed various tangible
interfaces for 3D modeling and design over the last 20
years, for a variety of applications. The impetus for the
practical aspects of our current work originated in
pioneering HCI tools developed by John Frazer and his
collogues as early as 1980 [2,14,16,17,18]. Frazer
developed working prototypes of 3D Input Devices (he
also used the terms “Machine Readable Models” or
“Intelligent Modeling Systems”) in order to support new
design approaches in architecture. The models were
intelligent, in that the model was able to extract its
geometry automatically. The supporting design software
enabled implementation of feedback concepts such that a
model (via its supporting software running on a host
computer) can advise the designer on design errors or
insights interactively. It is important to note that side by
side with the development of 3D Input Devices by John
Frazer and his colleagues, Robert Aish published and
developed tools along similar lines [1,2].

Figures 1 - 4 show a sample of Frazer’s 3D input
devices. Figure 1 shows the ‘Universal Constructor’, a
baseboard (‘The Landscape’) and a set of cells that can be
stacked on top of it. The system is a tangible input and
output device. A cell’s position and identification are
sampled in real-time, while the user stacks them on top of
each other or detaches them. The user can receive
feedback from the system by LEDs that are integrated
into the cells (for example, the cell can output messages
like ‘Detach me!’ or ‘Stack a cell on top of me!’).

Figure 2 and 3 present the ‘Flexible Intelligent
Modeling System’ and the ‘Three Dimensional Intelligent
modeling System’, respectively. Both were used in order
to give users a 3D shape input interface. The interaction
was performed by simply attaching and detaching the
model’s blocks. The model created was sampled in real-
time by a host computer.

Another 3D input device, the Segal Model (figure 4)
was built by John Frazer and his colleagues in the early
80’s in order to support the work of the architect Walter
Segal [15,16]. Segal had developed a timber-frame
technique for self-homebuilders but had found that the
users encountered difficulty when it came to self-
designing their homes. The tangible input tool that was
developed, The Self-Builder Model, enabled easy home

design for users without any knowledge or experience of
either computers or architecture (The model was named
the ‘Segal Model’ after Walter Segal had died). The
‘Segal Model’ is the main focus of this work and will be
described extensively in the following sections.

Sadly, the HCI community largely did not refer to
these models, and many of them were ‘reinvented’ by
various research groups. Geometry Defining Processors
(GDP) were introduced [4] along similar themes for
physically defining a 3D geometry problem and solving it
digitally. On a recent effort MERL’s Lego-like blocks can
define, in a easy-to-use manner a large scale 3D geometry
and extract it to a host computer in real-time [5]. A new
effort from Xerox seems to follow the same ideas,
although Xerox’s suggested ‘Digital Clay’ might enable
also direct (without user’s intervention) shape outputting
(as well as input) [34]. Although following different
paradigms (not HCI oriented), the NuMesh project [33] is

worth mentioning. NuMesh suggests and examines a 3D
modular network of high performance computers plugged
into a 3D-lattice topology in a Lego-like modularity.

3. Research Goals

Our initial goals were to implement a 3D geometry
input device, much like the Three - Dimensional
Intelligent Modeling System (figure 3) or MERL’s blocks
mentioned in section 2. After an extensive research of the
past and current efforts in this domain we came to realize
that the development of such tools, as engineering
demanding as it might be, would probably not yield an
original contribution to the field. We decided to use an
existing tangible geometry-inputting tool, and focus our
efforts into the research of new application domains. We
believe that new geometry inputting tangible interfaces

Figure 1. The Universal Constructor [15]

Figure 3. Three - Dimensional Intelligent
Modeling System [15]

Figure 4. The Segal Model [15]

Figure 2. Flexible Intelligent Modeling
System [15]

can not only change dramatically several interaction
paradigms but also make completely new interaction
paradigms feasible. We are currently researching three
main applied domains for new tangible interfaces: new
design tools, tools for the visually impaired and
Neuropsychological assessment tools. These efforts
however are beyond the scope of this paper which will
detail our efforts of technically reviving one of these
Machine Readable Models - the Segal Model and report
our preliminary results.

The Segal model allows the user to construct various
home plans, on top of a large grid, using 127 different
physical entities, each with a different electronic
identification. The entities can range from colored plastic
panels to any other small-scale object. The board output
was supported by wire-frame rendering software and a
design feedback tool, which produced design advice, such
as house area and cost, to interactively help the designer
(and in a way, imitate some of the expertise of an
experienced architect [15]). The board was scanned
electronically, in real-time with very low processing
demands from the hosting system (i.e., no real-time image
processing, etc). The Segal model is a one-of-a kind
device, a single copy was constructed for the research,
and there are no known copies. The model was used with
an early 80’s, currently obsolete, computer [15,16]. Our
immediate research goal was to ‘make the Segal Model
work’ with a standard, modern PC using a generic as
possible interface.

4. Implementation

4.1 Description of the Segal Model

The Segal model, as mentioned in section 2, is a
desktop sized (102cm x 71cm) board with an array of
edge connector slots covering most of the surface (figure
4). The edge connectors have 9 contacts. The center pin
is used by the scanning hardware to energize the slot (a
positive voltage is applied to the center pin to read out the
slot contents). The panels or other tangible objects that
plug into the connector slots have one to eight diodes
with the anodes connected to the common (center) contact
and the cathode connected to one of the eight outer
contacts. This allows each tangible object to have a code
ranging from 1 to 255. These values can be used to
encode shape, color, size, or what ever attributes are
useful for the system being designed using the model. In
order to extract the orientation of the object (which way
round it is – front or back) only 127 of the object codes
are used while the other 127 support symmetrical
orientation positions of the same objects. One way to
visualize the model is as a grid formed by 24 columns of
16 vertical slots, and 16 rows of 24 horizontal slots.
There are 768 slots in total on the board. The model is a

passive device - it has no electronics internally - and the
tangible objects only have the simple diodes for
specifying attributes.

The model was constructed, along with a controller, to
read out the slots occupancy values and to input them to a
computer. The two units are hooked together with five
50-pin ribbon connectors. The controller is a relatively
simple circuit designed to read out the 8-bit data values
from the 768 slots, while still keeping the number of
input/output wires manageable (there are a total of 768 x
8 = 6144 pins that must be read). The controller and
board, do this by multiplexing the signals over the ribbon
cables.

The basic idea is similar to a keyboard scanner, or a
memory chip. Think of the board as a matrix consisting
of 96 word-lines - or columns, and an orthogonal 8 bit-
lines - or rows (these are actually not single lines but are
an 8-bit bus, but for this part of the discussion that can be
ignored for simplicity). The controller energizes one of
the word lines, and then selects one of the 8 bit-lines to
see whether there is a connection between the two.
Diodes (on the tangible objects that are plugged into the
Segal board) prevent false paths being generated as would
be the case if wire or resistors were used to bridge the
rows and columns. In the following simple example
(figure 5) there are "sneak paths" that show a false
connection at C0 (via C1,B1,B0) and another at B2 (via
B1,C1,C2).

The word-lines are energized from a group of
counter/decoders that form a "walking one" function.
The bit-lines are read out one at a time via an 8:1
multiplexer (actually 8 of them as each output is 8-bits
wide), driven by a 3-bit counter. The interface, as built,
had separate signals to advance the two counters and also
separate reset signals to set the two counters to an initial
known state.

Figure 5. Matrix Scanning: Phantom
connection is the dotted line

In the original implementation of the model the
controller was attached to the I/O bus of the now obsolete
BBC-B. This interface was implemented with a
Rockwell R6522 (VIA - Versatile Interface Adapter).
The VIA buffered the bytes from the controller and
handled the handshake required by the host computer. It
also allowed the host computer to control the two reset
lines and two counter clocks via a control register.

4.2 The Task - Our Design Goals

For our current and future use of the Segal Model we
determined that a more modern, and more widely
available host would allow us more flexibility than trying
to use the BBC-B even as just an interface to our modern
graphical computers. There was a trade off between
having to learn and reuse the BBC-B, and knowing that it
would take some time to design, build, and debug a new
hardware interface and software drivers. Some analysis
indicated that it would add new life to the model, and
make future development easier, if we devised a way to
attach the controller to a commonly available computer,
like a PC.

Our goal was to construct a hardware-software system
that would allow a researcher to access the occupancy
data from the model with relative ease. We wanted to be
able to read out the 768-position occupancy matrix fast
enough that a human user would not perceive a delay.
We considered which operating system - Linux or
Windows - to use, and decided that initially we would use
which ever one was easiest, but that we wanted to do both
so the model could be easily used in more environments.

These constraints dictated that we needed to design
around a common "generic" interface, and that the
hardware-software interface be kept as simple as possible
(making it easier to develop two sets of software).

4.3 Design Considerations

Four common interfaces were evaluated to determine
which would suit our requirements best. We considered
using a digital I/O PCI card that could be customized to
work with either the computer bus interface, or plug in as
a replacement for the VIA chip. This did not fit well with
the criteria for using standard interfaces, and the software
to support it would have required a custom driver for both
platforms. We also considered replacing the VIA chip
with a microcontroller and having it send the data to an
Ethernet interface (perhaps even as an HTML server), but
again it was more complex, and higher performance than
what we needed. A serial port (perhaps implemented
with a microcontroller) was also considered. The serial
transfers would have had a perceptible delay, and the
hardware to implement a serial port is somewhat more
than the parallel port solution that we decided to use.

Parallel ports are relatively fast, and there have been a
variety of devices that had been attached up to them (from
printers as they were originally designed, to scanners,
cameras, floppies, and even CDRom writers) showing
that they were flexible enough to accommodate this
project.

Studying documents and case studies brought to light
that there were several "standards", and that design
mistakes could destroy the parallel port chip. The
different port standards existed because the original
standard (described by IBM in 1981) was not amended or
formalized until the IEEE 1284-1994 standard was issued
in 1994. The original parallel port had useful
characteristics, but as manufacturers extended these, they
did it in an ad-hoc way - yielding different "standards".
The IEEE standard has several different modes - to
handle devices of differing complexity and function. For
our application the PS/2 bi-directional mode and the EPP
(Enhanced Parallel Port) mode, were most appropriate.
ECP (Extended Capabilities Port), a major part of the
IEEE 1284 standard, would have worked in principal, but
it was too complex for our needs. EPP is easier to
support with software than the PS/2 bi-directional is,
because the port hardware handles the hand-shake details.
It was also capable of faster transfers (up to 1MB/second
compared to the PS/2 which typically transfers at around
150KB/second). We tentatively decided to use this mode
(the peripheral hardware required to implement the PS/2
and the EPP are very similar).

The parallel port solutions did require that the number
of control signals be reduced from 4 in the old design
(two clock signals, and two reset signals). We combined
the two reset signals into one INIT signal, and added
logic to advance the "walking-one" count when the 3-bit
multiplexer counter overflowed - going from a value of 7
to a value of 0.

This gave us very simple software model of the
interface. There was one control operation - the INIT bit
which sets both counters to zero, and there were
read_data operations. The read operation would be used
to advance the counter to the next slot.

Since we had defined such a simple interface to this
board, we were able to find a driver that would work
without having to learn the details of driver writing. We
obtained a "user-level" parallel port driver for Linux that
was being developed by Tim Waugh [27]. This would
work for our initial testing and proof of concept.

4.4 Modification of the Segal Model

Figure 6 shows a block diagram of the revised
controller. The “inputs” are an INITialize signal, and the
READ_Data signal. The INIT signal sets the 3-bit “row-
multiplexer” counter to zero, and resets the “walking one”
counter-decoder to zero—which energizes the `0’ output

which is not connected. The ReadData signal enables the
8-databits into the parallel port cable while it is an active
`low’, and when it goes high at the end of the read cycle it
triggers the 3-bit counter to increment to the next row.
The NOR gate output will have a low to a high transition
when the counter overflows from seven to zero. This
transition is used to increment the walking one counter.
The walking-one circuit is implemented to wrap around at
the end of the scan, so multiple scans could be
implemented by simply reading more data. As there is no
capability to set the two counters to a particular value, the
read out is strictly sequential. If one wants to read slot N
they would clear the counters with the INIT function, and
then would read and discard N-1 values and then read N.
In practice this is not a problem as it takes so little time to
read the entire array. The remainder of this section
describes the technical details of the modification of the
model, and the software to make it functional. The non-
technical or casual reader can skip it with no loss of
continuity.

Before making the modifications to the working Segal
Model controller we tested the critical logic and software
with a breadboarded circuit. The test circuit implemented
the handshaking and a simple 8-bit counter that was
incremented each time the port was read. The driver was
installed, and the system was tested with a small program.
The eight input bytes that the program read were all the
same, and were not related to the values in the counter.
The handshake logic was working and the computer read
operations were causing the counter to increment, but no

data was coming back. We investigated timing issues but
that was not the problem. We also changed the test
circuit and program to use PS/2 mode, but found the same
result. After some deeper research into the data sheets for
the chip that implements the parallel port and an
examination of the source code for the driver, the problem
was located. When a program set the driver into a
particular mode, it would save and use this state
information to implement the handshake protocol
(adjusting for the fact that the code to read data in PS/2
mode is quite different than EPP), but it did not tell the
parallel port chip to change modes. The reason for this
was that the driver had been developed for the next,
experimental, version of Linux and then back-ported to
the standard version. The lower level drivers differ in
these two versions, generating this problem. We made
small modifications to the driver and that fixed the
problem.

The controller was modified with the tested design.
The 240V 50Hz power supply was replaced with a
universal input supply so the controller could be easily
used anywhere in the world. The handshake and clock
chain were tested on the bench, to assure that there were
no wiring mistakes that would damage the parallel port.

When we did our initial test of the complete system we
found that we could detect the presence of tangible
objects, but the slot addresses did not seem logical, and
more seriously, a single panel would be detected as if
there were in several places.

Figure 6. Controller Block Diagram: A simplified schematic of the parallel port - Segal model interface

We found that if we slowed down the scan (putting a
20-millisecond delay between reading each byte) we did
not get the ghosting. Although this solved the problem it
made reading the entire board (768 data points at 20ms
per sample is a little over 15 seconds) much slower than
the design goals. Crosstalk was also considered, as the
wires from the controller to the slots are over a meter in
length. An oscilloscope showed that this was not the
problem, but rather one caused by residual charge on the
column line. When a column is energized it charges up
the wire to the group of slots. The reading of a row does
not discharge this wire very much (CMOS has a very
high input impedance). Because of the very low leakage
path, the charged wire took on the order of 400
microseconds to have its voltage level drop below the
logic `1' threshold. We had two choices - either slow the
reading speed down, or add resistors to discharge the
capacitance. We could not slow the transfers down with
hardware, as the EPP specification requires that a port
return data within 10 microseconds or the transfer will
time out. This was much less than 400 microseconds.
We opted for pull down resistors (20k Ohm) installed on
the sixty-four input lines from the slots. That solved the
ghosting problem. This had not been noticed in earlier
uses of the model as it was always scanned slowly to
show the user what was happening. Our new
requirements were somewhat different.

The calibration of the addressing led to the discovery
of a design mistake. With a single test panel we found
that the lower addresses were the vertical slots near the
left edge of the board, and that all the vertical slots came
before the horizontal ones. The horizontal slot numbers
increase from the upper left to the lower right in a row
wise fashion. While doing the calibration we discovered
that the first seven vertical slots were not giving us data.
The test program was discarding the first eight bytes read,
as the "clear" function sets the "walking-ones" counter to
zero. The decoded output line `0' is activated in this state,
but not used, so no slot groups are selected. Since none of
the sockets was energized in this state, and since the state
would not change until the 3-bit counter overflowed we
discarded the first 8 values. Thinking that our
understanding was wrong, we took out the "pre-read" and
tried again. The first slots now worked, but the addresses
still were not logical. The first column of vertical slots
were numbered 8, 1, 2, 3, 4, 5, 6, 7, 16, 9, 10, 11, 12, 13,
14, 15 which did not make much sense.

An analysis of the logic showed that it was a simple
problem, and is often the case, there were other pointers
to the problem that we had discarded. The "missing" slot
problem was not a logic error in the program, but was a
hardware logic problem that was also giving a strange
sequence of addresses. The difficulty was that the
walking-one counter was being incremented when the 3-
bit counter went from zero to one instead of from seven to

zero; the wrong edge of the clock had been used. The
problem had been created when the design was optimized
to reduce the number of chips that would be needed to
implement it. The problem was fixed with the addition of
an inverter, and changing the program back to the way it
had been. We had a working system that could be used
on most computers world wide.

4.5 Current Technical Status and Plans

The model and its interface are basically working well.
A program can scan the entire board in around 2msec
(with essentially no human perception of delay). Some of
the tangible objects have deteriorated because of the
storage, and need to have their edge connectors cleaned.
There are also a few that have a poor solder connections
to the diodes on some of the panels that need to be found
and fixed. We are also planning on finding or writing a
MS-Windows driver, to improve the usability of the Segal
module in different environments.

5. Preliminary Results

As a preliminary demonstration of the power of the
Segal model as a design tool we choose to render our
worlds via a “Half-Life” graphical engine [30]. The user
starts by building a world using physical-tangible objects
on top of the Segal model (figure 7). The physical model
is sampled and transferred automatically to a virtual
model in a “Half-Life” based 3D environment, with full
control of all the appearance of the world (texture,
lighting, etc.) and full support of virtual walkthroughs in
the former physical model (figure 8). Furthermore, the
virtual world can now be populated with virtual entities
and characters, either by physical-tangible means or by
software editing (figure 9). The physical model can then
become a fully interactive, fully active virtual world
(figure 10).

The preliminary use of “Half-Life” as a rendering
engine prevented us from applying any interactive
editing, since the process of rendering the virtual world is
time consuming (less then a minute for transferring the

Figure 7. Building a world tangibly. The user builds
the letters ‘U OF A’.

sampled model into a fully rendered 3D world on a
regular Pentium PC). However, we believe that this
simple implementation demonstrates the power of simple,
natural and easy to use tangible input device in
performing tasks that otherwise will involve a much more
complex mouse-keyboard based interaction.

6. Future Work

In the short term our major tasks are solving the
remaining technical issues concerning the Segal Model:
temporally unstable connections and an eight
undetectable slots. We then plan to create a graphical
environment (in OpenGL ®) that will be editable in real-
time by the tangible tool. On the long run our major tasks
are to create several useful, testable interaction tools,
using the Segal Model. We are planning several tools in
the following fields: computer aided design, tools for the
visually impaired and neuropsychological assessment
tools. Our main task will be to test the tools with real
users and to empirically prove their superiority over
standard, existing interaction tools.

7. Conclusions

We briefly described the scope of past and current
research in the tangible interfaces domain and the
paradigms underlying it. We discussed geometry
inputting tangible interfaces and our research motivations
and goals in this field. We described a pioneering tangible
interface called the Segal Model and our experience in
connecting it via a standard interface to a common PC.
We detailed our technical solution to this problem, using
a standard parallel port connection. We then presented
our initial results, rendering physical models assembled
on top of the Segal model to a 3D virtual “Half-Life”
worlds.

8. Acknowledgments

We would like to thank and acknowledge the
contribution of John Frazer’s team members who created
with him the original Machine Readable Models. The
models were designed and created from 1979 onwards by
John and Peter Frazer. In particular, the Segal model was
created for the architect Walter Segal in 1982 by John
Frazer (then Professor of Computer Aided Design at the
University of Ulster). Julia Frazer (then Director of
Autographics Software Ltd.) wrote the original software.
The help of John Potter, a research assistant at the
University of Ulster is also acknowledged. Later
modifications of the model to create a teaching tool
(Calbuild) were by Steven Brown (also then at the
University of Ulster) with David McMahon as research
assistant. Funding for the project was from Autographics
Software and the University of Ulster. The authors wouldFigure 10. A fierce battle takes place around

the letters structures.

Figure 8. Gordon Freeman (“Half-Life”’s
avatar) running below the virtual ‘OF’
structure.

Figure 9. Gordon Freeman meets two fellow
scientists inside the ‘U’ structure.

like to thank the current help and support of our colleague
Dr. Mark Green from the University of Alberta,
Computer Graphics Research Group. We also thank
Lloyd White the computer graphics lab manger for his
support and involvement and Matthew Olson for the
“Half-Life” related advice.

9. References

[1] Aish R. and Noakes P., “Architecture without numbers -
CAAD based on a 3D modeling system”, Computer-Aided
Design, Vol. 16 No. 6, pp. 321-328, Nov 1984.
[2] Aish R., “3D input for CAAD systems”, Computer-Aided
Design, Vol. 11 No..2, pp. 66-70, March 1979
[3] Alexander K. and Strommen E., “Evolution of the Talking
Dinosaur: The (Not So) Natural History of a New Interface for
Children”, Conference proceedings on Human factors in
computing systems (CHI) 98, April 18 - 23, 1998, Los Angeles,
CA USA
[4] Anagnostou G., Dewey D. and Patera A. T., “Geometry
Defining Processors for Engineering Design and Analysis”, The
Visual Computer, Vol. 5, pp. 304-315, 1989.
[5] Anderson D., Frankel J., Marks J., Leigh D., Ryall K.,
Sullivan E. and Yedidia J., "Building Virtual Structures With
Physical Blocks (Demo Summary)”, Proc. of UIST 99.
Asheville, North Carolina USA, Nov. 1999.
[6] Balakrishnan R., Fitzmaurice G., Kurtenbach G., and Singh
K. (1999). “Exploring interactive curve and surface
manipulation using a bend and twist sensitive input strip”.
Proceedings of the ACM Symposium on Interactive 3D
Graphics (I3DG'99), pp. 111-118. New York: ACM.
[7] Bruns W. and Brauer V., “Bridging the Gap between Real
and Virtual Modeling - A New Approach to Human-Computer
Interaction” artec Paper Nr. 46. Online: http://www.artec.uni-
bremen.de/field1/rugams/papers/texas/texas.html
[8] Don S. and Duncan J., The Making of Jurassic Park,
Ballantine Books, NY, 1993.
[9] Esposito C. and paley W. B., “Of Mice and Monkeys: A
Specialized Input Device for Virtual Body Animation,” 1995
Symposium on Interactive 3D Graphics, Monterey CA USA
(1995)
[10] Fitzmaurice G., Balakrishnan R., and Kurtenbach G,
“Sampling, Synthesis, and Input Devices”. Communications of
the ACM, 42(8). pp. 54-63. New York: ACM, August 1999.
[11] Fitzmaurice W. G., “Graspable User Interfaces,” Ph.D.
Thesis, Univ. of Toronto. Online-http://www.dgp.
toronto.edu/people/GeorgeFitzmaurice/thesis/Thesis.gf.html
1996
[12] Fitzmaurice W. G., Ishii H. and Buxton W., “Bricks:
Laying the Foundations for Graspable User Interfaces,” CHI ’95
Mosaic of Creativity, 442-9, May 1995.
[13] Fjeld M., Bichsel M. and Rauterberg M., “BUILD-IT: a
brick-based tool for direct interaction”. In D. Harris (ed.)
Engineering Psychology and Cognitive Ergonomics (EPCE),
Vol. 4. Hampshire: Ashgate, pp. 205-212., 1999. Also online -
http://www.iha.bepr.ethz.ch/pages/leute/fjeld/publications/EPC
Ebuildit.pdf
[14] Frazer J. H., '”Three-Dimensional Data Input Devices”.
Computers/Graphics in the Building Process. National
Academy of Sciences, Washington 1982.

[15] Frazer J. H., An Evolutionary Architecture, Architectural
Association 1995.
[16] Frazer J. H., “Use of Simplified Three - Dimensional
Computer Input Devices to Encourage Public Participation in
Design”, Computer Aided Design 82, Conference Proceedings,
Butterworth Scientific, pp143-151, 1982.
[17] Frazer J.H., Frazer J.M. and Frazer P.A., “Intelligent
Physical Three-Dimensional Modelling System”, Computer
Graphics 80 Conference, Conference Proceedings, Online
Publications, pp. 359-70, 1980.
[18] Frazer J.H., Frazer J.M. and Frazer P.A.,, “New
Developments in Intelligent Modelling”, Computer Graphics 81,
conference proceedings, Online Publications, pp. 139-54, 1981
[19] Gibson J. J., The Ecological Approach to Visual
Perception, L. Erlenbaum: London, (1986).
[20] Gorbet G. M., Orth M. and Ishii H., “Triangles: Tangible
Interface for Manipulation and Exploration of Digital
Information Topography,” CHI 98, 49-56, April 1998.
[21] Ishii H. and Ullmer B., “Tangible Bits: Towards Seamless
Interfaces between People, Bits and Atoms,” CHI 97, 234-241,
March 1997.
[22] Ishii H., Wineski C., Brave S., Dahley A., Gorbet M.,
Ullmer B. and Yarin, P., “ambientRoom: Integrating Ambient
Media with Architectural Space,” Conference Summary of CHI
98, April 1998.
[23] Johnson M. P., Wilson A., Kline C., Blumberg B. and
Bobick A., “Sympathetic Interfaces: Using a Plush Toy to
Direct Synthetic Characters”, Conference proceedings on
Human factors in computing systems (CHI) 99 - Pittsburgh,
May 1999.
[24] Kirsh D. and Maglio P. “On Distinguishing Epistemic from
Pragmatic Action”, Cognitive Science, Vol. 18, pp. 513-549,
(1994).
[25] Murakami T., Hayashi K., Oikawa K. and Nakajima
N.,“DO-IT: Deformable Objects as Input Tools“, Conference on
Human Factors in Computing Systems (CHI) 95, Conf.
Companion, Denver, 1995, 87-88.
[26] Norman D. A., The Psychology of everyday things,
BasicBooks - HarperCollins, pp. 87-104.
[27] Online: http://www.cyberelk.demon.co.uk/parport.html
[28] Online: http://www.hasbrointeractive.com/hi/product.cfm?
product=99154
[29] Online: http://www.oip.gatech.edu/imtc/html/haptic_lens
.html
[30] Sierra Studios, “The Official Half-Life web-site”,
http://www.sierrastudios. com /games/half-life/
[31] Suzuki H. and Kato H., “Interaction-Level Support for
Collaborative Learning: AlgoBlock - An Open Programming
Language” Online - http://www-cscl95.indiana.edu/
cscl95/suzuki.html
[32] Underkoffler J. and Ishii H., “Illuminating Light: An
Optical Design Tool with A Luminous-Tangible Interface,”
Proceedings of CHI 98, April 1998.
[33] Ward S., Abdalla K., Dujari R., Fetterman M., Honoré F.,
Jenez R., Laffont P., Mackenzie K., Metcalf C., Minsky M.,
Nguyen J., Pezaris J., Pratt G. and Tessier R. “The NuMesh: A
Modular, Scalable Communications Substrate”. Proceedings of
the International Conference on Supercomputing, July 1993.
[34] Xerox Park, Online: http://www.parc.xerox.com/spl/
projects/modrobots/DigitalClay/digital_clay.htm

